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A TRANSPORT-THEORETIC ANALYSIS OF PULSE PROPAGATION THROUGH
A RANDOM CLOUD OF SCATTERERS

I. M. Besieris, W. E. Kohler and A. I. Tsolakis*
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

ABSTRACT. © A systematic development from the Dyson equation and the
two-frequency Bethe-Saltpeter equation of a two-frequency radiative trans-
fer equation suitable for pulsed waves in the presence of a random distri-
bution of absorptive discrete scatterers with pair correlations is
presented. The main strength of the radiative transfer theory expounded
here stems from the fact that it is applicable under conditions of large-
angle scattering, statistical inhomogeneities and statistical anisotropies.
It accounts, also, for regular refraction (variable scatterer density,)

absorption and frequency offsets. c
-

I. INTRODUCTION. Multiple scattering by a random distribution of
discrete scatterers has been studied extensively over the past thirty five
years, primarily because of its relevance to a large number of pressing
applied problems that arise in radio physics and engineering. Fundamental
work on multiple scattering of scalar waves by a distribution of uncorrelated
scatterers was initiated by Foldy [1] and has been developed further by
Lax [2] and Twersky [3]. Based on these original contributions, a great
number of applications have appeared in the literature [cf., for example,
Refs. 4-7) involving both the coherent field and the incoherent intensity.
The problem of assessing the multiple scattering effects on scalar and
vector waves in the presence of random distributions of correlated
scatterers is more challenging. Basic contributions along this direction
have been made by Twersky [8], Bringi et al. [9] and Tsang and Kong [10] in

. connection with the coherent field, and by Barabanenkov [11], Barabanenkov

and Finkel'berg [12] and Watson et al. [13] in connection with the incoherent
field intensity.

The motivation for our work is based on the absence of a second-order
statistical theory for studying pulse propagation through random distributions
of correlated scatterers. Such a theory is necessary for the development
of predictive models pertinent to (1) pulsed electromagnetic propagation
through complex natural media (e.g., rain, fog, sandstorms, vegetation);

(2) the analysis of obscuration and detection techniques; (3) remote
sensing and identification of aerosol clouds; (4) scattering clouds
consisting of complicated individual scatterers (lossy, anisotropic,
frequency-sensitive, possibly aligned, pair-correlated) with gross macro-
scopic structure (finite extent and variable number density).

*Present address: Bell Laboratories, Holmdel, NJ 07733.
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Our specific goal in this exposition is to derive systematically
a radiative transfer equation for the two-frequency incoherent intensity
function (a quantity related to the two-frequency mutual coherence function
and, hence, to second-order pulse statistics.) The derivation is limited
to scalar pulsed waves propagating through a random distribution of
sbsorptive scatterers with pair correlation:.

The proposed radiation transport equation is based on the Dyson and
Bethe-Saltpeter equations at the level of the direct interaction and
ladder approximations, respectively. If, i1 addition to pair correlationms,
the assumptions are made that the number of scatterers is large and the
average distance between any two scatterers is large compared with a
reference wavelength, the Dyson and Bethe-Saltpeter equations are analogous
to those associated with a continuous random medium with fluctuations of
the permittivity which are distributed according to a normal law and with ‘
a deterministic profile directly linked to the number of scatterers per
wmit volume.

The transition from the Dyson and Bethe-Saltpeter equations to the
two-frequency radiative transfer equation is effected by a continuous
stochastic transport theory that was originally introduced by Barabanenkov
st al. [14] and subsequently extended to the two-frequency context by
Besieris and Kohler [15-17]). As in their case, our derivation differs
markedly from the usual procedures for obt:ining classical radiation tramsport
equations; the latter rely mostly on consicerations of energy balance, with
no explicit "microscopic" interpretation given to the extinction and
scattering coefficients.

In the following we present a sketch of the proposed two-frequency
radiation transport theory, with primary enphasis on the underlying assump-
tions and the physical interpretation of tle various terms entering into the
final transport equation.

II. FIRST AND SECOND ORDER COHERENCE FUNCTIONS FOR A RANDOM DISTRIBUTION
OF PAIR-CORRELATED SCATTERERS, PART A: ANISOTROPIC SCATTERING. The deriva-
tion of the Dyson equation for the mean field and the Bethe-Saltpeter
equation for the mutual coherence tensor under conditions of anisotropic
scattering and in the presence of pair correlations among scatterers is
based on the Twersky procedure. The basic underlying assumptions are the
following: (1) We ignore third-order scattering by two scatterers, fourth-
order scattering by three scatterers, etc. (essentially the Twersky
assumption); (2) All scatterers have the same shape, size and orientation
distributions; (3) We consider only pair correlations and neglect all
contributions from higher-order correlations; (4) The number of scatterers
in a volume is infinite.

We resort, also, to the following notational definitions: (1) fa:
incident electric field at position E‘; (2) gf: total electric at ;s
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(3) gja E?: electric field at r, caused by the jth particle; (4) <<e>>:

configurational averaging (over size, shape and orientation distributions);
(5) p(x): particle density function; (6) B'(Ej’~£k): pair correlation
function.

Under the aforementioned assumptions, the Dyson equation for the
coherent vector-valued electric field assumes the form

<_3_a> = §a + f d_;_-j <<gja>> <§j> p(z_j)

+ f qu f 4£k <<gja>> <<ij>> g§F> B'(Eﬂ’ Ek) 3 (2.1a)

<<Gka>> = <<gka>> + [ dr, <<gza>> <<Gk2'>> p(gﬂ)

' a L m
+ f dzz f d—rm <<g, >> <<Gul >> <<(;k >> B'(LIL’ -Em) . (2.1b)

On the other hand, the Bethe-Saltpeter equation for the mutual coherence
tensor becomes

<_E_a_§b*> = <§a> <Eb*> + f dz:_ <<G a>> <_§j Ej*> <<Gjb*

- 33

a 3 mx b#* '
+I ds-j ] d_!:m <<(;j >> <E° E > <<(;m >> B (Ej’ Em) . (2.2)

>> o(zj)

A detailed derivation of Eqs. (2.1) and (2.2) is given in Ref. 18.
The former is at the level of the direct interaction approximation, whereas
the latter is at the level of the ladder approximation. Both are analogous
to equations associated with a continuous random medium with fluctuations
of the permittivity which are distributed according to a normal law and with
a deterministic refractive profile directly linked to the number of
scatterers per unit volume. It should be noted, however, that no counter-~
part to the second (collapsed) term on the right-hand side of (2.2) exists
in the continuous random medium case. In the absence of pair correlations,
i.e., B'(gj, Em) = 0, (2.1) and (2.2) reduce to the equations derived

previously by Twersky [cf. Ref. 19].

The vector-valued Dyson equation (2.1) and the tensor-valued Bethe-
Saltpeter equation (2.2) are the basic equations for deriving a tensor-
valued radiative transfer equation for vector waves. Such a derivation
is very complicated and will not be undertaken in this paper. Instead,
Eqs. (2.1) and (2.2) will be "scalarized" in the next section. (A set of
assumptions sufficient for such an approximation ié given in the Appendix.)
The resulting equations will form the basis for deriving a scalar radiation
transport theory in Sec. 1IV.
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II1. FIRST AND SECOND ORDER COHERENCE FUNCTIONS FOR A RANDOM
DISTRIBUTION OF PAIR-CORRELATED SCATTERERS, PART B: ISOTROPIC SCATTERING.
In the Eollov:l.ng, we shall assume that the scattering channel is tenuous,
i.e., the distance between any two scatterers is much greater than a
reference wavelength. We shall also assume scalar isotropic scattering.
In the electromagnetic case this approximation arises if individual
scatterer dimensions are small compared to wavelength and if "gross"
depolarization effects are neglected. In the case of acoustic wave
propagation, isotropic scattering takes place when individual scatterer
dimensions are small compared to wavelength.

Under these assumptions, one deals, essentially, with a scalar wave
theory. The Dyson equation (2.1) simplifies considerably and is rewritten
below in a form suitable for our work in Sec. IV:

[vZ2 + k2 + 4xnf p(x)] <BE(x, k)>

= -4nf [ dr' <<6'(z, £', k)>> <E(z', k)> B'(z, £') ; (3.1a)

[v2 + k2 + 4nf p(x)] <<G'(x, ', k)>>

= ~4nf §(x - r') - 4nf [ dr" <<G'(x, ", k)>> <<G'(z", r', k)>> B'(x, ") .

(3.1b)

The notation is identical to the one used in the previous section, except
that E and G' are now scalar-valued. The quantities k and f are respectively
the wavenumber and a configurationally averaged scalar-valued scattering
coefficient. The latter is independent of r; however, it may depend on k
and, in general, is complex by virtue of the absorptive properties of the
scatterers.

The scalar-valued Bethe-Saltpeter equation for the two-frequency
mutual coherence function I'(r;, ry, k,, k,) = <E(x;, kl)g*(iz’ k,)> can be
written as follows:

‘2.9 2 2 _ 2 - * '

- -"{p(s'l)f <<G'*(£29 _r,li k2)>> r'(s‘l’ E’l’ kz)

'p(zz)f* <<c'(£1' ,!,20 k1)>> r'(!_z: !20 kl’ kz)}
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-4x [ dx' [f B'(x;, x') - £% B'(z', 5_2)][«c'(51.£'. k)>> T’y I, Ky ky)
+ <<G'*(z,, 5""‘2)» r'(ey, r's ks k)1 . (3.2)

: The derivation of (3.2) [cf. Ref. 18] incorporates a narrowband pulse
assumption. In this case, the scattering coefficient f depends only on the
¢ prescribed carrier frequency.

The functional forms of Eqs. (3.1) and (3.2) are analogous to those
derived by Besieris and Kohler [15,16) for acoustic wave propagation in a
continuous random medium characterized by Gaussian fluctuations. As in the
case of the more general equation (2.2), no counterpart of the first
(collapsed) term on the right-hand side of (3.2) exists in the continuous
random case. For k and in the absence of pair correlations, i.e.,

B' (_1, rz) =0, Eqs. (3 i) and (3.2) reduce to relationships already

available in the literature [cf. Ref. 19].

g IV. TWO-FREQUENCY BADIATIVE TRANSFER EQUATION FOR A RANDOM DISTRIBUTION
OF ABSORPTIVE SCATTERERS WITH PAIR CORRELATIONS: SCALAR WAVE THEORY. In the

Bethe-Saltpeter equation (3.2) for I"(gl. I, kl’ kz) we introduce center-of-
mass and difference coordinates and wavenumbers, viz., R = (51 + 52)/ 2,
LEE X, kg = (kl + kz)/2. kd z

definitions I"(;l, Xy kl, kz) z I'(R, r, ks, kd), B' (_t;l. 52) = B(R, ¥),
<<G'(5_1. L. P9 k)>> = <<G(R, r, k)>>, and M(R, r, k) = f<<G(R, r, k)>> B(R, r).
We introduce, also, the Fourier transform pairs Ir'(R, r, ks, k d) ~— £(R, «x,
k., kd), B(R, r) +— ¢(R, ), and M(R, r, k) «— M(R, k, k) = M'(R, x, k) +

i i't"(!, k, k). It should be noted that M(R, r, k) is analogous to the "mass
operator” entering into the Dyson equation in the case of smoothly inho-
mogeneous media. Furthermore, the quantity f(R, «, ks. k d) is the two-

kl - kz, and use the notational

frequency extension to the phase-space Wigner distribution function.

We consider next smoothly inhomogeneous wmedia for which I'(R, r, k_, k d)'
B(R, r) and <<G(R, r, k)>> vary slowly with respect to the sum variasble R,

. and rapidly with respect to the difference variable r. We make also two

- further assumptions: (1) the ratio of difference to sum wavenumbers is

) small compared to unity, i.e., Ik d/k.| << 1; (2) the scattering and regular

" losses are small but not negligible. Within the framework of these restric-
tions scattering becomes significant [cf. Ref. 18 for details] on the
"energy" surface

H'(®, x, k) =32 - k2=~ 4nf, o(® - bv H'(R, x, k)] =0 , (4.1)
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wvhich is independent of regular and scattering losses. The quantity fR in
(4.1) denotes the real part of the complex scattering coefficient f.

In the general case of statistically anisotropic pair correlations of
the scatterers we seek a solution in the form

£R, x, ko k) = £ (R, xk, K, k) + £1(R, K, k, k) (4.2)

The first term on the right-hand side of (4.2) is the coherent part of the
two-frequency Wigner distribution and is directly related to the solution
of the Dyson equation (3.1). The incoherent part of the Wigner density
function, on the other hand, is chosen as follows:

£ @ K ko k) =k [V, B'®R, ks kDT H'Rs ks k)|

x cln'(!o Ky ks)] I(Bo 8, kss kd) ;s 8= 5/" . (4.3)

The quantity I(R, s, k., k d) is the two-frequency incoherent "ray" intensity
at the point R and in the direction of the unit vector s.

Let, next, k .. R, s, k) denote the value of k for which H'(R, ks,
k‘) = 0, and define an effective index of refraction as follows:

DR 8, k) = [V H'R, s, k)|/k, ; x =k (B, 8, k;) . (4.4)

Let, finally, O(R, s, k') be the angle between the direction of the group

and phase velocities. With these definitions in mind, the incoherent ray
intensity I(R, s, ks’ k d) is found to obey the two-frequency radiative

transfer equation
02, (B, 8, k) '51' (IR, 8, k, k;)|cos OR, 8, k )|~} nZZ (R, 8, k)}
= (-4 £, p(R) - 47 W'[R, ko (R, 5, k)8, k] +1Fkk,)

x Kl acle (R, 8, k) IR, 8, k)

+ 2|f|2 k;z ‘{ d!-' k2ff (R, s, kc)neff(-a-’ LU ks)n;gf(s’ 8’y kl)
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x |cos O(R, 8", k)| HOR, kR, 8, k)8 - k (R, 5, k)s'] + p(R)}
x I(R, 8°, ks’ kd)

+ 2|£]2 neff(g’-i’ ks)|cos o(R, s, ks)| [ dc' {o[R - keff(5’~§’ kslg -«'l
R3
+o®} £ R, k', Kk, k), | (4.5)

where Q denotes the range of s' over the surface of a unit sphere.

Equation (4.5) for the two-frequency incoherent intensity I(R, s, ks, kd)

is the main result of this paper. In interpreting this equation, we should
note the following: The left-hand side of the equation is a convective
term; the ray paths correspond to an effective medium determined by the
density of the scatterers p(R), the scattering coefficient f and the
spatial correlation function of the scatterers. [The quantity dl1 denotes
the differential of a curvilinear ray passing through the point R in the
direction V H'(R K, k ) ] The first and second terms on the right-hand

side of (4. 5) are due respectively to regular and scattering losses; the
third term arises because of frequency offsets; the fourth one is the
scattering term; finally, the last one is the source term, representing

the "feeding" of the incoherent intensity by the coherent part of the Wigner
distribution function.

In order to compute the second-order pulse moment <E(£1, tl)E*(gz, t2)>

at the receiver site, we must first find the two-frequency mutual coherence
function E(x,, E*(r , W ) and then perform a two-dimensional Fourier
transform wit& respect to “1 and wy. In the ladder approximation, the
two-frequency mutual coherence function obeys the Bethe-Saltpeter equation
(3.2). The phase-space analog of the two-frequency mutual coherence function
is the Wigner distribution f(R, k, ks’ kd). The latter is decomposed in

(4.2) into a coherent part, which is directly linked to the solution of the
Dyson equation (3.1), and an incoherent part directly expressible [cf.
Eq. (4.3)] in terms of the two-frequency ray intensity I(R, s, ks’ kd).

The latter obeys the radiative transfer equation (4.5).

Not all the successive steps outlined in the previous paragraph need
be followed for obtaining information about second-order pulse statistics.
1f, for exanple, such information is restricted to the incoherent part
of <B(_1, t )E (r2, t2)> direct usage can be made of the two-frequency

ray intensity I(R, 8, k .’ kd), as explained below.
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Let l‘i(_, K, k » k ) > fl(_, K, k , K ) denote the incoherent part
°f r(__’ K’ ) Thm’

Ty@® I, ks ky) = £ ds k"2 n32r R, 8y kJKZ (R, 8, k)
x |cos OR, 8, k )|~} I(R, 8, k,, kexp{1 k (R, 5, k)s - £} ,  (4.6)

: which establishes a useful connection between the photometric ray intensity
o I(R, s, ks, k d) and the incoherent part of the two-frequency mutual coherence

i function.

V. CONCLUDING REMARKS. A radiative transfer equation for pulsed scalar
waves in a random distribution of pair correlated absorptive scatterers
has been derived systematically from the Dyson and Bethe-Saltpeter equationms.
Detailed solutions -- both analytical and numerical -- are presently under
consideration. An important question in this context is whether controlled
- experiments could be carried out gso that comparisons would be made with
theotetical results.

: An open research area in propagation through random distributions of

scatterers is the systematic derivation of a tensor transport theory from

: the Dyson equation (2.1) and the Bethe-Saltpeter equation (2.2). Such a
theory is of paramount importance for physical situations where anisotropic
scattering and depolarization effects cannot be neglected.

‘ 0 EN Research supported in part by the Army Research Office
» under contract Ro. DAAG 29-79-C-0085 and the Office of Naval Research under
’ contract No. W0O0O01l4~76-C-0056.
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APPENDIX. (onsider the case of Born approximation valid for single
plrticlc scattering together with the simplification

[ ar'le ") - 1) explik(@ - 0) + £'} = [ dr'le (z) - 1] . (A-1)
vl vB

In this expression, v denotes the volume of the scatterer, ¢ (r) is the

relative pcrlittivity of the scatterer, and :I. o are respectively unit
vectors along the incident and scattered directions. In this case, the

tensor-valued quantity <<g 8> obeys the equation
‘ b

v, x v, x () - k1) <<zj‘>> ~k2 g8, - )T , (A-2)

“a “a E
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where

E= g 448" =< dr'fe (") - 1> (a-3)
\'J

S
and I is the unit tensor (dyadic).
Let
M) = [V, x V. x () - KBQ+E eI . (A-4)
-a —a

Then, the Dyson equation (2.1) reduces to

M‘ <_§a> = kzg f d£k <<Gka>> <§_k> B'(_r_a, —r-k) ; (A-5a)
a = 2 -
M <<Gj >> = k°E 6(_1:_a _r.j)I
2 a m, ' -
+ k%€ [ dr <<G > <<6,">> B'(r,, 1) . (A-5b)

The Bethe-Saltpeter equation (2.2) simplifies to
M <§a __E_b*» _ <§-a Eb*> Mb*

2 a Jj b* '
-klgfd-gj <<(;j >> <gJ E >B(£a’£j)
bk

>> B'(r

k22€* I dlj <§a Ej*> <<Gj "y '!'b)

a _j* b#*
+ 1% [ ary <" B <P B, 1)

b
k22€* f dlj <<Gja>> <§j E > B'(gj, r)

b*

+ k26 <E® £ <<c b gb
1 = = a

>> - kzzg* <<Gba>> <E° E * . (A-6)

If macroscopic depolarization effects are neglected, that is, if the approxi-
mation VxVx(+) = V[V ¢ (+)] - ¥2I = V2I can be justified, both equations
(A-5) and (A-6) reduce to scalar relationships.
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